S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson's disease.
نویسندگان
چکیده
Peroxiredoxins (Prx), a family of peroxidases that reduce intracellular peroxides with the thioredoxin system as the electron donor, are highly expressed in various cellular compartments. Among the antioxidant Prx enzymes, Prx2 is the most abundant in mammalian neurons, making it a prime candidate to defend against oxidative stress. Here we report that Prx2 is S-nitrosylated (forming SNO-Prx2) by reaction with nitric oxide at two critical cysteine residues (C51 and C172), preventing its reaction with peroxides. We observed increased SNO-Prx2 in human Parkinson's disease (PD) brains, and S-nitrosylation of Prx2 inhibited both its enzymatic activity and protective function from oxidative stress. Dopaminergic neurons, which are lost in PD, become particularly vulnerable. Thus, our data provide a direct link between nitrosative/oxidative stress and neurodegenerative disorders such as PD.
منابع مشابه
Neuroprotective effect of topiramate against 6-hydroxydopamine-induced cell death in Parkinson's disease cell mode
Introduction: Parkinson's disease (PD) is a common neurodegenerative disorder characterized by progressive neuronal dysfunction. Growing evidence has shown that oxidative stress plays a crucial role in the pathogenesis of Parkinson's disease. Correspondingly, the current study evaluated the protective effect of topiramate in 6-hydroxydopamine induced oxidative stress and apoptosis in PC12 cells...
متن کاملRole of sulfiredoxin as a peroxiredoxin-2 denitrosylase in human iPSC-derived dopaminergic neurons.
Recent studies have pointed to protein S-nitrosylation as a critical regulator of cellular redox homeostasis. For example, S-nitrosylation of peroxiredoxin-2 (Prx2), a peroxidase widely expressed in mammalian neurons, inhibits both enzymatic activity and protective function against oxidative stress. Here, using in vitro and in vivo approaches, we identify a role and reaction mechanism of the re...
متن کاملc-Abl-mediated Drp1 phosphorylation promotes oxidative stress-induced mitochondrial fragmentation and neuronal cell death
Oxidative stress-induced mitochondrial dysfunction and neuronal cell death have important roles in the development of neurodegenerative diseases. Dynamin related protein 1 (Drp1) is a critical factor in regulating mitochondrial dynamics. A variety of posttranslational modifications of Drp1 have been reported, including phosphorylation, ubiquitination, sumoylation and S-nitrosylation. In this st...
متن کاملEffects of Ferulago angulata Extract Against Oxidative Stress Induced by 6-hydroxydopamine in Rats
Background: Parkinson's disease is one of the prevalent degenerative diseases of the neural system. Oxidative stress, which has been recognized as the most important factor of Parkinson's disease, plays a main role in the death of neurons in this disease. Antioxidants have a proved role in the prevention of oxidative stress. Objective: Considering the presence of evidence regarding antioxid...
متن کاملTransnitrosylation from DJ-1 to PTEN attenuates neuronal cell death in parkinson's disease models.
Emerging evidence suggests that oxidative/nitrosative stress, as occurs during aging, contributes to the pathogenesis of Parkinson's disease (PD). In contrast, detoxification of reactive oxygen species and reactive nitrogen species can protect neurons. DJ-1 has been identified as one of several recessively inherited genes whose mutation can cause familial PD, and inactivation of DJ-1 renders ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 47 شماره
صفحات -
تاریخ انتشار 2007